
Biol. Lett. (2008) 4, 577–580

doi:10.1098/rsbl.2008.0210
Published online 29 July 2008

Global change biology

Spatial analysis improves
species distribution
modelling during
range expansion
Paulo De Marco Jr,
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Species distribution models (SDMs) assume
equilibrium between species’ distribution and
the environment. However, this assumption can
be violated under restricted dispersal and
spatially autocorrelated environmental con-
ditions. Here we used a model to simulate
species’ ranges expansion under two non-equili-
brium scenarios, evaluating the performance of
SDM coupled with spatial eigenvector mapping.
The highest fit is for the models that include
space, although the relative importance of
spatial variables during the range expansion
differs in the two scenarios. Incorporating space
to the models was important only under coloni-
zation-lag non-equilibrium, under the expected
scenario. Thus, mechanisms that generate range
cohesion and determine species’ distribution
under climate changes can be captured by
spatial modelling, with advantages compared
with other techniques and in line with recent
claims that SDMs have to account for more
complex dynamic scenarios.
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1. INTRODUCTION
Species distribution models (SDMs) for geographical

range prediction (Segurado & Araújo 2004; Guisan &

Thuiller 2005; Elith et al. 2006) assume that species’

occurrence is determined by an immediate response

of individuals to environmental variation (equilibrium

of species’ distribution in relation to climate, sensu
Araújo & Pearson 2005). This is expected only under

unlimited dispersal (or if dispersal is at least as fast as

the changes in environmental conditions) and very

high extinction rates outside the limits of species’

environmental ‘envelope’.

However, non-equilibrium will arise under

different ecological and evolutionary scenarios, so

that SDMs may produce biased estimates. First, it
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could appear by failures in colonization of suitable
areas due to recent environmental changes (e.g.
habitat destruction, abrupt climatic shifts or physical
barriers) or will appear in the initial stages of species’
invasion (‘colonization-lag’ non-equilibrium, or CNE,
hereafter). In this case, although distribution is
actually determined by the environment, generating
strong range cohesion (sensu Rahbek et al. 2007), a
mismatch between the actual and potential distri-
butions is expected due to historical time lag. Second,
complex colonization–extinction dynamics within the
species’ environmental envelopes, generated by local
processes as, for instance, biotic interactions or
metapopulation dynamics, will appear as random
noise in geographical space. We call this a demo-
graphic non-equilibrium (DNE) scenario, which is
expected to disrupt range cohesion.

Some recent studies showed that incorporating
spatial predictors into SDMs improves model fit
(Segurado et al. 2006; Bahn & McGill 2007; Dormann
2007). However, as the two scenarios of non-equili-
brium described above will generate different spatial
structures (highly structured in CNE and not struc-
tured in DNE), it is still necessary to test the
performance of autocorrelation models under these
scenarios and find how they can be conceptually linked
to non-equilibrium dynamics (Araújo & Guisan 2006;
Heikkinen et al. 2006). Here we used simulation
models, based on cellular automata, to evaluate how a
spatially explicit SDM performs under these non-
equilibrium scenarios.
2. MATERIAL AND METHODS
The use of simulated data is an interesting approach to evaluate
SDMs because some important species-range properties affecting
modelling efficiency can be controlled for (Hirzel et al. 2001;
Austin et al. 2006; Meynard & Quinn 2007). This is usually done
by creating a hypothetical species whose occurrences are found
within a pre-determined ‘bioclimatic envelope’, and sampled
occurrences are then used to evaluate SDM performance by
comparison with a known range. As we were interested in dynamic
scenarios, we generated non-equilibrium ranges by a spatially
explicit simulation of colonization–extinction mechanisms using
cellular automata models.

All simulations were based on the premise that species distri-
bution is affected by a simple ‘suitability’ measure, established by
the combination of unimodal responses to environmental variables
(Meynard & Quinn 2007). This suitability measure was defined for
each of the 2545 cells (0.24 decimal degrees cell size) covering the
geographical area of the cerrado biome (figure 1), based on four
climatic variables (mean annual temperature and its seasonality
and mean annual precipitation and its seasonality, from the
WORLDCLIM database; available at http://www.worldclim.org) and
two topographic variables (altitude and slope, from the Hydro-1K
global digital elevation model). The cerrado realm was used here as
a computational facility only.

Range expansion processes were simulated based on local
colonization and extinction constrained by local suitability (see
electronic supplementary material for details). Under the CNE
scenario, the range expansion was based on two simple rules: (i) a
species automatically colonizes a cell ‘i’ if there is any neighbouring
cell ‘j’ successfully colonized at time tK1 and (ii) extinction
probability is linearly and negatively related to the suitability. A
DNE scenario was simulated by adding stochastic colonization–
extinction dynamics to the range expansion model. Thus, we
allowed for a suitability-independent persistence probability that
increased linearly with the proportion of neighbouring cells success-
fully colonized at time tK1.

We modelled species’ distribution at 15 time steps (cycles),
before all possible suitable areas were occupied by the population
in both simulation models, using the maximum entropy principle
implemented in the program MAXENT v. 3.4 (Phillips et al.
2006). At each step, 100 occurrence points were randomly
sampled and modelled in MAXENT based on the six
This journal is q 2008 The Royal Society
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Figure 1. Simulated range distribution under two scenarios of non-equilibrium (CNE and DNE) at two selected time steps
and their predicted distribution obtained by modelling environment alone (ENV) or environment coupled with spatial
eigenvectors (ENVCSEVM).
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environmental variables previously described. Model evaluation
was done using Cohen’s kappa (k; Allouche et al. 2006) obtained
after converting probabilities of occurrence to presence–absence
data. Cut-off thresholds were established using receiving operator
characteristic curves (Liu et al. 2005). We then added the first
five eigenvectors extracted from a truncated double-centred
geographical distance matrix as additional predictors, coupling
then MAXENT with spatial eigenvector mapping (see Diniz-Filho &
Bini (2005), Griffith & Peres-Neto (2006) and Dormann et al.
(2007), for reviews). These eigenvectors are orthogonal spatial
predictors that capture, at different scales, the geometry of the
studied area and were obtained in spatial analysis in macroecol-
ogy software (Rangel et al. 2006).

Spatial autocorrelation in model residuals (i.e. observed occur-
rence–probability of occurrence given by MAXENT at each cell) was
investigated using Moran’s I coefficients (Dormann et al. 2007). We
used an analysis of covariance (ANCOVA) to verify whether the
gain in k values (Dk) after adding spatial predictors was influenced
by the type of scenario simulated (CNE versus DNE). A decrease
in k values is expected with the increase of range size due to the
loss of statistical power and reduction in prevalence (Allouche et al.
2006; Jiménez-Valverde & Lobo 2007), since sample size for
MAXENT analysis was held constant. Thus, to account for this
relationship and make Dk comparable, geographical range size was
allowed as a covariate in the ANCOVA.
Biol. Lett. (2008)
3. RESULTS AND DISCUSSION
The analyses revealed that, in the initial phases of
range expansion, adding spatial variables always
provided better fit than using environmental data
alone in MAXENT (figure 1; figure S1, see also

animations in the electronic supplementary material).
Under the DNE scenario, models have lower k values
than in their corresponding simulations for the CNE
scenario (figure 2a) up to 30 time steps. However,
ranges expanded continuously in the second scenario,

whereas in the first there was a tendency to stabil-

ization below the maximum expected by suitability

(figure 2b). The relationship between gain in k values

after adding spatial predictors (Dk values) and range

size was independent of the scenario, as the

interaction between this factor and range size was not

significant (F1,26Z1.05; pZ0.3144). After accounting

for the effect of range size (F1,27Z58.5; p!0.001), a

significant effect of scenario was detected (F1,27Z9.14;
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Figure 2. (a) Kappa statistics (open squares, CNE-ENV;
filled squares, CNE-ENV-SEVM; open circles, DNE-ENV;
filled circles, DNE-ENV-SEVM), (b) range size (squares,
CNE; circles, DNE) and (c) residual autocorrelation
(Moran’s I ) in the first distance class for MAXENT based on
environment and spatial eigenvectors models under CNE
and DNE simulations across time cycles (open squares,
CNE-ENV; filled squares, CNE-ENV-SEVM; open circles,
DNE-ENV; filled circles, DNE-ENV-SEVM).
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p!0.01) and the adjusted mean value of Dk was
actually 10 times higher in the CNE (0.06) than in
DNE (0.005; see figure S2 in the electronic supple-
mentary material).

Under CNE, using environmental variables alone
overestimates the range in the initial phases of the range
expansion (figure 1). This occurs because in these
initial phases the occurrences are sampled within a
restricted part of the range, so there is a systematic bias
in sampling environmental suitability values. By includ-
ing spatial predictors, a better fit was obtained because
these additional predictors forced range cohesion inde-
pendently of the spatial distribution of the environ-
mental suitability. Under the CNE scenario, spatial
autocorrelation in the residuals was higher than in the
DNE scenario, due to the higher levels of range
Biol. Lett. (2008)
cohesion within a more concentrated part of the

potential range defined by suitability (figure 2c). On
the other hand, the low levels of spatial autocorrelation

in residuals under DNE shows that suitability is enough

to ensure accurate predictions and, consequently, this
explains why spatial models tend to be ineffective to

improve fit in this case (figure 2a).

It is well known that biotic interactions and
stochastic colonization processes also determine

species’ range (Heikkinen et al. 2006; Araújo & Luoto
2007; Soberon 2007). Spatial eigenvector mapping

and other spatial autocorrelation techniques can

account for these processes only if they are spatially
structured. Our analyses reveal that adding spatial

components can be a promising approach to model-
ling CNE processes, such as, for instance, those

occurring under fast climate change allowing species’

range expansion towards new suitable areas.
However, they are ineffective under DNE, in which

departures from bioclimatic envelopes are caused by

local processes related to biotic interactions or meta-
population structure within species’ ranges. This is

coherent with theoretical expectations based on the
origins of autocorrelation in biogeographical data

(Diniz-Filho et al. 2003). So, despite the uncertainty

associated with particular SDM techniques (Thuiller
2003, 2004; Araújo & New 2007) and recent criti-

cisms of the limited transferability of MAXENT

(Peterson et al. 2007; but see Phillips 2008), our
main conclusions must hold in general.

Although further studies are necessary to show
how these spatial predictors can be coupled with

projected environmental changes, spatial eigenvector

mapping is particularly suitable for this task as it
allows representing spatial relationships at different

spatial scales. Also, they can be easily introduced as
new predictors in any SDM, with the advantage of

not being intrinsically related to observed species’

distribution, as it occurs with autologistic terms
(Dormann 2007). This is in line with recent sugges-

tions that it is necessary to expand SDMs to

incorporate other more complex dynamic scenarios in
a spatially explicit context.
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